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A unique description for highly nonlinear potential water waves is suggested, where weak three-dimensional
effects are included as small corrections to exact two-dimensional equations written in conformal variables.
Contrary to the traditional approach, a small parameter in this theory is not a surface slope, but it is the ratio
of a typical wavelength to a large transversal scale along the second horizontal coordinate. A first-order
correction for the Hamiltonian functional is calculated, and the corresponding equations of motion are derived
for steep water waves over an arbitrary nonuniform quasi-one-dimensional bottom profile.
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The problem of water waves is one of the classical fields
in hydrodynamics, and it has been studied extensively over
many years. Starting from the middle of the 1990’s, in the
theory of two-dimensionals2Dd potential flows of an ideal
fluid with a free surface, the so-called conformal variables
have been employedf1–4g ssee also Ref.f5g for surface
gravity-capillary waves under external pressure forcingd.
With these variables, highly nonlinear equations of motion
for planar water waves can be represented in an exact and
compact form containing integral operators diagonal in the
Fourier representation. Such integrodifferential equations are
very suitable for numerical simulations, since effective com-
puter programs for the discrete fast Fourier transformsFFTd
are now availablessee, e.g.,f6gd. Based on these equations,
significant progress has been achieved in understanding non-
linear dynamics of water waves, including the wave turbu-
lence f7,8g and the mechanism of sudden formation of the
giant sea wavesf9g. Recently, the exact 2D description has
been generalized to arbitrary nonuniform space- and time-
dependent bottom profilesf10,11g. However, though in many
situations real sea waves differ from planar flows just
weakly, but they are never ideally two-dimensional, and in
natural conditions the second horizontal dimension plays an
important role in wave dynamics. Therefore there is a need
for a theory, which could describe strongly nonlinear, per-
haps breaking waves and, on the other hand, it would take
into account three-dimensionals3Dd effects, at least as weak
corrections to a dominant 2D motion. In the present work
such a highly nonlinear weakly 3D theory is suggested as an
extension of the exact conformal 2D theory described in
f10g. It should be emphasized that existing approximate non-
linear evolution equations for water wavessfor example, the
famous Kadomtsev-Petviashvili equation, various
Boussinesq-type equationsf12,13g, or the equations derived
by Matsunof14g and Choif15gd are valid just for weakly
nonlinear water waves, but not for overturning or breaking
waves.

It is a well-known fact that a very significant difficulty in
the 3D theory of potential water waves is the general impos-
sibility to solve the Laplace equation for the velocity poten-
tial wsx,y,q,td,

wxx + wyy + wqq = 0, s1d

in the flow region −Hsx,qdøyøhsx,q,td between asstatic
for simplicityd bottom and a time-dependent free surface,
with the given boundary conditions

uwuy=hsx,q,td = csx,q,td, us]w/]nduy=−Hsx,qd = 0. s2d

sHerex andq are the horizontal Cartesian coordinates,y is
the vertical coordinate, while the symbolz will be used for
the complex combinationz=x+ iyd. Therefore, a compact ex-
pression is absent for the Hamiltonian functional of the sys-
tem,

Hhh,cj =
1

2
E dxdqE

−Hsx,qd

hsx,q,td

swx
2 + wy

2 + wq
2ddy+

g

2
E h2dxdq

; Khh,cj + Phhj s3d

sthe sum of the kinetic energy of the fluid and the potential
energy in the vertical gravitational fieldgd. The Hamiltonian
determines canonical equations of motionsseef16–18g, and
references thereind

ht = sdH/dcd, − ct = sdH/dhd, s4d

in accordance with the variational principlede L̃dt=0, where

the Lagrangian isL̃=echtdxdq−H.
In the traditional approach, the problem is partly solved

by an asymptotic expansion of the kinetic energyK on a
small parameter—the steepness of the surfacessee Refs.
f16,18g, and references thereind. As a result, a weakly non-
linear theory is generated, which is not good to describe
large-amplitude steep wavesssee Ref.f19g for a discussion
about the limits of such a theoryd. The theory developed in
the present work is based on another small parameter—the
ratio of a typical length of the waves propagating along thex
axis, to a large scale along the transversal horizontal direc-
tion, denoted byq falternatively, it is the ratio of typical
wave numberskq/kx in the Fourier planeskx,kqdg. Thus, we
define e=slx/ lqd2!1 and note: the less this parameter, the
less our flow differs from a purely 2D flow. A profiley
=hsx,q,td of the free surface, a boundary value of the ve-
locity potential csx,q,td;w(x,hsx,q,td ,q,t), and a given
bottom profiley=−Hsx,qd are allowed to depend strongly on*Electronic address: ruban@itp.ac.ru
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the coordinatex, while the derivatives over the coordinateq
will be supposedly small:uhqu,e1/2, ucqu,e1/2, uHqu,e1/2.

General idea of the method. In the same manner as in the
exact 2D theoryf10,11g, instead of the Cartesian coordinates
x and y, we use curvilinear conformal coordinatesu and v,
which make the free surface and the bottom effectively flat:
x+ iy;z=zsu+ iv ,q,td, −`,u, +`, 0øvø1, where
zsw,q,td is an analytical on the complex variablew;u+ iv
function without any singularities in the flow domain 0øv
ø1. Now the bottom corresponds tov=0, while on the free
surfacev=1. The boundary value of the velocity potential is
uwuv=1;csu,q,td. If the bottom is nonuniform, it is conve-
nient to represent the conformal mappingzsw,q,td as a com-
position of two conformal mappingsw°z°z, similarly to
works f10,11g: zsw,q,td=Z(zsw,q,td ,q). Here an intermedi-
ate function zsw,q,td possesses the property Imzsu
+0i ,q,td=0, thus resulting in the important relation

zsu + i,q,td ; jsu,q,td = s1 + iR̂drsu,q,td, s5d

wherersu,q,td is a purely real function, andR̂= i tanhk̂ shere

k̂;−i ]̂ud is an anti-Hermitian operator, which is diagonal in
the Fourier representation: it multiplies the Fourier harmon-
ics rksq,td;ersu,q,tde−ikudu by Rk= i tanhk, so that

R̂rsu,q,td=efi tanhkgrksq,tdeikusdk/2pd. A known analyti-
cal functionZsz ,qd determines parametrically the static bot-
tom profile: Xfbgsr ,qd+ iYfbgsr ,qd=Zsr ,qd, wherer is a real
parameter running from −̀ to +`. The profile of the free
surface is now givensin a parametric form as welld by the
formula

Xfsgsu,q,td + iYfsgsu,q,td ; Zfsgsu,q,td = Z„jsu,q,td,q….
s6d

For equations to be shorter, below we do not indicate the

argumentssu,q,td of the functionsc, j j̄ sthe overline de-
notes complex conjugated. Also, we introduce the notation
Z8sjd;]jZsj ,qd. The Lagrangian of the system in terms of

the variablesc, j, and j̄ can be written as followssthis is a
generalization of the 2D Lagrangian used inf10g, to 3D
spaced:

L =E Z8sjdZ̄8sj̄dF jtj̄u − j̄tju

2i
Gcdudq− Khc,Zsjd,Z̄sj̄dj

−
g

2
E FZsjd − Z̄sj̄d

2i
G2FZ8sjdju + Z̄8sj̄dj̄u

2
Gdudq

+E LF j − j̄

2i
− R̂S j + j̄

2
DGdudq, s7d

where the indefinite real Lagrangian multiplierLsu,q,td has
been introduced in order to take into account the relations5d.
Equations of motion follow from the variational principle
dA=0, with the actionA;eLdt. So, variation bydc gives
us the first equation of motion—the kinematic condition on
the free surface

uZ8sjdu2 Imsjtj̄ud = sdK/dcd. s8d

Let us divide this equation byuZ8sjdu2ujuu2 and use analytical
properties of the functionjt /ju. As a result, we obtain the
time-derivative-resolved equation

jt = jusT̂ + idF sdK/dcd
uZ8sjdu2ujuu2G , s9d

where the linear operatorT̂; R̂−1=−i cothk̂ has been intro-
duced. Further, variation of the actionA by dj gives us the
second equation of motion

Fcuj̄t − ctj̄u

2i
GuZ8sjdu2 = SdK

dZ
DZ8sjd +

g

2i
ImsZsjdduZ8sjdu2j̄u

−
s1 + iR̂dL

2i
. s10d

After multiplying Eq. s10d by −2iju we have

hfct + g Im Zsjdgujuu2 − cuj̄tjujuZ8sjdu2

= s1 + iR̂dL̃ − 2iSdK
dZ

DZ8sjdju, s11d

whereL̃ is another real function. Taking the imaginary part

of Eq. s11d and using Eq.s8d, we find L̃,

L̃ = T̂Fcu

dK
dc

G + 2T̂ ReFSdK
dZ

DZ8sjdjuG .

After that, the real part of Eq.s11d gives us the Bernoulli
equation in a general form,

ct + g Im Zsjd = cuT̂F sdK/dcd
uZ8sjdu2ujuu2G +

T̂fcusdK/dcdg
uZ8sjdu2ujuu2

+
2 RessT̂ − idfsdK/dZdZ8sjdjugd

uZ8sjdu2ujuu2
. s12d

It is interesting to note that equations of motions9d ands12d
possess a definite gauge invariance because they contain
only invariant combinationsZ8sjdju;Zu

fsg and Z8sjdjt;Zt
fsg

fobviously, Eq.s9d can be multiplied byZ8sjdg. Therefore,
there is a freedom in choice for the functionZsz ,qd: instead
of a particular functionZ1sz ,qd, one may use another func-

tion Z2sz ,qd if Z1sz ,qd=Z2(z̃sz ,qd ,q), wherez̃sz ,qd is a suf-
ficiently smooth analytical onz function taking real values at
the real axis Imz=0. Accordingly, j2su,q,td
= z̃(j1su,q,td ,q), thus the real functionsr1su,q,td and
r2su,q,td are different in both cases. This gauge freedom can
be useful in numerical simulations, when a nontrivial bottom
topography has to be taken into account.

Equationss9d and s12d completely determine the evolu-
tion of the system, provided the kinetic-energy functional

Khc ,Z,Z̄j is explicitly given. It should be emphasized that in
our description a general expression forK remains unknown.
However, under the conditionsuzqu!1, uwqu!1, the potential
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wsu,v ,q,td is efficiently expanded into a series on the pow-
ers of the small parametere,

w = ws0d + ws1d + ws2d + ¯ , wsnd , en, s13d

where wsn+1d can be calculated fromwsnd, and the zeroth-
order termws0d=Refsw,q,td is the real part of an easily
representedsin integral formd analytical function with the
boundary conditions Reufuv=1=csu,q,td, Im ufuv=0=0. Cor-
respondingly, the kinetic-energy functional will be written in
the formK=Ks0d+Ks1d+¯, with Ksnd,en, whereKs0dhcj is
the kinetic energy of a purely 2D flow,

Ks0dhcj =
1

2
E fswu

s0dd2 + swv
s0dd2gdudvdq= −

1

2
E cR̂cududq,

s14d

and the other terms are corrections due to gradients alongq.
Now we are going to calculate a first-order correctionKs1d.

First-order corrections. As a result of the conformal
change of two variables, the kinetic-energy functional is de-
termined by the expression

K =
1

2
E fwu

2 + wv
2 + JsQ · = wd2gdudvdq, s15d

where the Cauchy-Riemann conditionsxu=yv, xv=−yu have
been taken into account, and the following notations are
used:

J ; uzuu2, sQ · = wd ; awu + bwv + wq,

a =
xvyq − xqyv

J
, e1/2, b =

yuxq − yqxu

J
, e1/2.

Consequently, the Laplace equation in the new coordinates
takes the form

wuu + wvv + = · „QJsQ · = wd… = 0, s16d

with the boundary conditionsuwuv=1=csu,q,td, and ufwv
+bJswq+awu+bwvdguv=0=0. In the limite!1 it is possible to
write the solution as the seriess13d, with the zeroth-order
term satisfying the 2D Laplace equationwuu

s0d+wvv
s0d

=0, uwuv=1=csu,q,td, uwvuv=0=0. Thus, it can be represented
asws0d=Refsw,q,td, where

fsw,q,td =E cksq,tdeikw

coshk

dk

2p
, s17d

andcksq,td;ecsu,q,tde−ikudu. On the free surface

fsu + i,q,td ; Csu,q,td = s1 + iR̂dcsu,q,td. s18d

For all the other terms in Eq.s13d we have the relations

wuu
sn+1d + wvv

sn+1d + = · „QJsQ · = wsndd… = 0 s19d

and the boundary conditions

uwsn+1duv=1 = 0,

ufwv
sn+1d + bJswq

snd + awu
snd + bwv

snddguv=0 = 0. s20d

Noting that eswu
s0dwu

s1d+wv
s0dwv

s1dddudv=0 sit is easily seen
without explicit calculation ofws1d after integration by partsd,
we have in the first approximation

Ks1d =
1

2
E Jswq

s0d + awu
s0d + bwv

s0dd2dudvdq

=
1

2
E zuz̄uFReSfq −

fuzq

zu
DG2

dudvdq. s21d

Since zswd and fswd are represented aszsu+ ivd=ek̂s1−vd

3Zfsgsud and fsu+ ivd=ek̂s1−vdCsud, we can use forv inte-
gration the following auxiliary formulas:

E duE
0

1

fek̂s1−vdAsudgfek̂s1−vdBsudgdv

=E Se2k − 1

2k
DAkBk

dk

2p

= −
i

2
E sBsud]̂u

−1Asud − Bfbgsud]̂u
−1Afbgsudddu, s22d

with Afbgsud=ek̂Asud, Bfbgsud=ek̂Bsud. Now we apply the
above formulas to appropriately decomposed Eq.s21d
and, as a result, we obtain an expression of a formKs1d

=Kfsg
s1d−Kfbg

s1d, whereKfsg
s1d=FhC ,C̄ ,Z,Z̄j, Kfbg

s1d=FhCfbg ,Cfbg ,

Zfbg ,Zfbgj, with Z=Zfsg, Zfbg=ek̂Z, Cfbg=ek̂C=fcoshk̂g−1c.
The functionalF is defined as

F =
i

8
E sZuCq − ZqCud]u

−1sZuCq − ZqCuddudq

+
i

16
E hfsZuCq − ZqCud2/ZugZ̄

− ZfsZuCq − ZqCud2/Zugjdudq. s23d

From here one can express the variational derivatives
sdKs1d /dcd and sdKs1d /dZd by the formulas

dKs1d

dc
= Fs1 − iR̂d

dF
dC

+ s1 + iR̂d
dF
dC̄

G
− fcoshk̂g−1S dKfbg

s1d

dCfbg +
dKfbg

s1d

dCfbgD , s24d

dKs1d

dZ
=

dF
dZ

− e−k̂SdKfbg
s1d

dZfbg D . s25d

The derivativessdF /dCd and sdF /dZd are calculated in a
standard manner,

dF
dC

=
i

8
ZqfsZuCq − ZqCud + ]̂ufsCq − ZqCu/ZudZ̄gg

−
i

8
Zu]̂qf]̂u

−1sZuCq − ZqCud + sCq − ZqCu/ZudZ̄g,
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dF
dZ

= −
i

8
CqfsZuCq − ZqCud + ]̂ufsCq − ZqCu/ZudZ̄gg

+
i

8
Cu]̂qf]̂u

−1sZuCq − ZqCud + sCq − ZqCu/ZudZ̄g

+
i

16
f]̂ufsCq − ZqCu/Zud2Z̄g − sCq − ZqCu/Zud2Zug.

The expressions forsdKfbg
s1d /dCfbgd and for sdKfbg

s1d /dZfbgd are

similar. Now one can substitute sdK /dcd<−R̂cu

+sdKs1d /dcd and sdK /dZd<sdKs1d /dZd into the equations
of motion s9d and s12d, keeping in mind thatZ=Zsj ,qd, Zu

=Z8sjdju, Zq=Z8sjdjq+]qZ, Zfbg=Zsfcoshk̂g−1r ,qd, and so
on. Thus, the required weakly 3D equations of motion are
completely derived, and our main goal is achieved.

The answers are more compact in the limituku@1, corre-

sponding to the “deep water,” whenR̂→ Ĥ, T̂→−Ĥ, with Ĥ

being the Hilbert operator:Ĥ= i signk̂. In this caseKfbg
s1d→0,

and therefore

Kdeep< −
1

2
E cĤcududq+ FhC,C̄,Z,Z̄j. s26d

After appropriate rescaling of the variableu, one may write

Z = u + si − ĤdYsu,q,td, Zu = 1 + si − ĤdYu. s27d

Equations of motion for quasiplanar waves on the deep water
look as follows:

Zt = ZusĤ − idffĤcu − sdF/dcdg/uZuu2g, s28d

ct + gY= cuĤffĤcu − sdF/dcdg/uZuu2g

+ ĤfcufĤcu − sdF/dcdgg/uZuu2

− 2 RessĤ + idfZusdF/dZdgd/uZuu2, s29d

wheresdF /dcd=2 Refs1−iĤdsdF /dCdg.
In summary, now we have derived fully nonlinear evolu-

tion equations for weakly 3D steep water waves, both for the
deep water case and for waves over an arbitrary nonuniform
quasi one-dimensional bottom profile. A range of possible
applications of this theory is very wide. The obtained equa-
tions are intended to describe, for example, a sudden forma-
tion of giant waves in a sea, or overturning waves on a
beach. The next step should be the development of an effi-
cient numerical method for the simulation of these equations,
since at the present moment their analytical treatment seems
to be very hard. Recently, activity in this direction has been
undertaken by the author, and some preliminary numerical
results have been already obtainedsfor deep water waves at
this stage, as this case is the most simple for programmingd.
After necessary modifications and careful testing, this code
will be used for future serious numerical experiments.
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