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Quasiplanar steep water waves
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A unique description for highly nonlinear potential water waves is suggested, where weak three-dimensional
effects are included as small corrections to exact two-dimensional equations written in conformal variables.
Contrary to the traditional approach, a small parameter in this theory is not a surface slope, but it is the ratio
of a typical wavelength to a large transversal scale along the second horizontal coordinate. A first-order
correction for the Hamiltonian functional is calculated, and the corresponding equations of motion are derived
for steep water waves over an arbitrary nonuniform quasi-one-dimensional bottom profile.
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The problem of water waves is one of the classical fields Oxx+ @yy+ ©qq=0, (1)
in hydrodynamics, and it has been studied extensively over i )
many years. Starting from the middle of the 1990’s, in thein the flow region H(x,q) <y= 7(x,q,t) between &static
theory of two-dimensiona(2D) potential flows of an ideal for simplicity) bottom and a time-dependent free surface,
fluid with a free surface, the so-called conformal variableswith the given boundary conditions
have been employefil-4] (see also Ref[5] for surface _ _
gravity-capillary waves under external pressure forging Ply=rixan = P00, (JQlIN)]y=pixg=0.  (2)
With these variables, highly nonlinear equations of motion(HereX andq are the horizontal Cartesian coordinatgss
for planar water waves can be represented in an exact anfle yerical coordinate, while the symbowill be used for
compact form containing integral operators diagonal in thethe complex combination=x+iy). Therefore, a compact ex-

Fourier_representation._Such integ(odiﬁe(ential equgtions arSression is absent for the Hamiltonian functional of the sys-
very suitable for numerical simulations, since effective com-

puter programs for the discrete fast Fourier transfoRfT) tem,

are now availabldésee, e.g.[6]). Based on these equations, 1 7(x,q,0) 9
significant progress has been achieved in understanding nof{7, ¢} = > f dxdqf (¢f+ ¢ + @l)dy + 5 f 7Pdxdq
linear dynamics of water waves, including the wave turbu- —Hxq)

lence[7,8] and the mechanism of sudden formation of the = K{n, 4 + Pin} (3)

giant sea wavef9]. Recently, the exact 2D description has
been generalized to arbitrary nonuniform space- and timetthe sum of the kinetic energy of the fluid and the potential
dependent bottom profilé40,11. However, though in many energy in the vertical gravitational fiely). The Hamiltonian
situations real sea waves differ from planar flows justdetermines canonical equations of motisee[16-18, and
weakly, but they are never ideally two-dimensional, and inreferences therein
natural conditions the second horizontal dimension plays an
important role in wave dynamics. Therefore there is a need m=(5HI&Y), == (5HISm), (4)
for a theory, which could describe strongly nonlinear, per-, ) o o~
haps breaking waves and, on the other hand, it would tak# accordance with the variational principfif £dt=0, where
into account three-dimensiond@D) effects, at least as weak the Lagrangian i€ =/ ¢npdxdo-"H.
corrections to a dominant 2D motion. In the present work In the traditional approach, the problem is partly solved
such a highly nonlinear weakly 3D theory is suggested as apy an asymptotic expansion of the kinetic eneigyon a
extension of the exact conformal 2D theory described insmall parameter—the steepness of the surf@me Refs.
[10] It should be emphaSiZEd that EXiSting apprOXimate nonfl6ila’ and references thereims a result, a Weak|y non-
linear evolution equations for water wavder example, the |inear theory is generated, which is not good to describe
famous  Kadomtsev-Petviashvili  equation,  various|grge-amplitude steep wavésee Ref[19] for a discussion
Boussinesq-type equatiofi£2,13, or the equations derived apout the limits of such a theoryThe theory developed in
by Matsuno[14] and Choi[15]) are valid just for weakly the present work is based on another small parameter—the
nonlinear water waves, but not for overturning or breakingratio of a typical length of the waves propagating alongxhe
waves. axis, to a large scale along the transversal horizontal direc-
It is a well-known fact that a very Significant dlfflCUlty in tion, denoted byq [a|ternative|y, it is the ratio of typ|Ca|
the 3D theory of potential water waves is the general imposyave numbers,/k, in the Fourier plangk,,k,)]. Thus, we
sibility to solve the Laplace equation for the velocity poten-gefine e=(I,/1)?<1 and note: the less this parameter, the
tial ¢(x,y,q,1), less our flow differs from a purely 2D flow. A profilg
=7(x,q,t) of the free surface, a boundary value of the ve-
locity potential #(x,q,t)= ¢(x, 7(x,q,t),qd,t), and a given
*Electronic address: ruban@itp.ac.ru bottom profiley=-H(x,q) are allowed to depend strongly on
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the coordinate, while the derivatives over the coordinaje
will be supposedly smallz,|~ €2, [y~ €'/2, [Hq| ~ €'/2

General idea of the methodh the same manner as in the
exact 2D theory10,11], instead of the Cartesian coordinates
x andy, we use curvilinear conformal coordinatesanduv,

which make the free surface and the bottom effectively flat:

X+iy=z=z(u+iv,q,t), —-o<u<+cw, 0<v<1, where
z(w,q,t) is an analytical on the complex variable=u+iv
function without any singularities in the flow domain<y
=<1. Now the bottom corresponds t&=0, while on the free
surfacev=1. The boundary value of the velocity potential is
¢|,=1=#(u,q,1). If the bottom is nonuniform, it is conve-
nient to represent the conformal mappitw, q,t) as a com-
position of two conformal mappings+— (> z, similarly to
works[10,11]: z(w,q,t)=2Z(¢(w,q,t),q). Here an intermedi-
ate function {(w,q,t) possesses the property ftu
+0i,q,t)=0, thus resulting in the important relation

{u+i g = &u,q,) = (L +iR)p(u,q,b), (5)

wherep(u q,t) is a purely real function, ang=i tankk (here
k——|¢9) is an anti-Hermitian operator, which is diagonal in

the Fourier representation: it multiplies the Fourier harmon-

ics pu(q,t)=Sp(u,q,t)e’®du by R.=itanhk, so that
Ro(u,q,t)=JTi tanhk]py(q, t)ek(dk/2). A known analyti-
cal functionZ(Z,q) determines parametrically the static bot-
tom profile: X(PX(r,q) +iY®r,q)=Z(r,q), wherer is a real
parameter running fromee to +oo. The profile of the free
surface is now givergin a parametric form as welby the
formula

X(u,q,0) +iY(u,q,t) = Z8(u,q,1) = Z(&(u,q,1),9).
(6)

For equations to be shorter, below we do not indicate the

argumentqu,q,t) of the functionsy, ¢ ¢ (the overline de-
notes complex conjugateAlso, we introduce the notation
Z'(§)=d:Z(€,9). The Lagrangian of the system in terms of
the variablesy, & and £ can be written as followsthis is a
generalization of the 2D Lagrangian used [it0], to 3D
space:

f 287 (g){g‘g” §tg“]mudq {0, 2(9,2(0)}

9 (|z0-2@ || Z©a+Z ¢

_2f [ i ] l 2 }d“dq
E-& ofE+¢

+f |:T—R< Zj]dudq, (7)

where the indefinite real Lagrangian multipli&fu,q,t) has
been introduced in order to take into account the relation
Equations of motion follow from the variational principle
8A=0, with the actiond= [Ldt. So, variation bysy gives

us the first equation of motion—the kinematic condition on
the free surface
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1Z/ (&7 Im(&&) = (5K159). ®)

Let us divide this equation bz’ (£)|?&,|? and use analytical
properties of the functiorg,/&,. As a result, we obtain the
time-derivative-resolved equation

(K1 5¢)
1Z' (@&

where the linear operatcif R1=—j cothk has been intro-

duced. Further, variation of the actioh by 6¢ gives us the

second equation of motion

&=&(T+ i)[ (9)

oK
{mz mLZ (6= L)z + S maoiz o

(1+iR)A
BT (10
After multiplying Eq. (10) by -2i&, we have
T+ 9Im Z@N&f2 - mé&dz (92
=(1+iR)A 2‘<%)z' 11
=(1+IRA - 2| — JZ/(94,, (11)

whereA is another real function. Taking the imaginary part
of Eq. (11) and using Eq(8), we flndA

“ oK - oK
T|: ‘//ugp] +2T R{(E)Z'(f)fu} .

After that, the real part of Eq11) gives us the Bernoulli
TLyu(9K )]

equation in a general form,
+
|Z’(§)|2|§u|2} 1Z'(OP&

2 Re(T -1)[(8K/82)Z' (£)&,])
12/ (92 &)?

It is interesting to note that equations of moti@) and(12)
possess a definite gauge invariance because they contain
only invariant combinationz’(g)guzzgs] and Z’(§)§tEZES]
[obviously, Eq.(9) can be multiplied byZ'(£)]. Therefore,
there is a freedom in choice for the functi@fZ,q): instead

of a particular functiorZ;(Z,q), one may use another func-

tion Z,(£,9) if Zy(£,0)=25(¢(£,9),), whereZ(¢,q) is a suf-
ficiently smooth analytical og function taking real values at
the real axis Int=0. Accordingly, & (u,q,t)

:Z(gl(u,q,t) ,0), thus the real functionsp;(u,q,t) and
p-(u,q,t) are different in both cases. This gauge freedom can
be useful in numerical simulations, when a nontrivial bottom
topography has to be taken into account.

Equations(9) and (12) completely determine the evolu-
tion of the system, provided the kinetic-energy functional
K{y,Z,Z} is explicitly given. It should be emphasized that in
our description a general expression foremains unknown.
However, under the conditiong,| <1, || <1, the potential

(51 5)

ytgim Z(9) = wﬁ[

(12)
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¢(u,v,q,t) is efficiently expanded into a series on the pow-
ers of the small parametet

(n)

=0+ oW+ @+ g (13

where ¢™% can be calculated from™, and the zeroth-
order term¢®=Re¢(w,q,t) is the real part of an easily
representedin integral form) analytical function with the
boundary conditions Reb|,-;=#(u,q,t), Im ¢|,-o=0. Cor-
respondingly, the kinetic-energy functional will be written in
the form =K@+ KD +--- with L ~ ", whereXO{y} is
the kinetic energy of a purely 2D flow,

Ky}=3 f [( so<°>)2+<<pf,°>>2]dud)dq=—% f YRy dudg

(14)

and the other terms are corrections due to gradients aong
Now we are going to calculate a first-order correctioft.
First-order corrections As a result of the conformal

change of two variables, the kinetic-energy functional is de-

termined by the expression

= % f [¢5+ 2+ I(Q - V ¢)?]dudvdag, (15

where the Cauchy-Riemann conditions=y,, x,=-Yy, have

been taken into account, and the following notations are,

used:

J=|z% (Q:Ve¢)=ag,+be,+ e,

XoYq ™ XgYo 12 YoXu
.

J 1

_ YuXq ~
BN

_ ~ 2

Consequently, the Laplace equation in the new coordinates

takes the form

(pUU+€DUU+ v (Q‘J(Q . V@)):O,

with the boundary conditions ¢|,-;=¢(u,q,t), and [e¢,
+bJ(¢q+agy+be,)]|,-0=0. In the limite<1 it is possible to
write the solution as the seri€43), with the zeroth-order
term satisfying the 2D Laplace equatiorp,, O, fg)
:01 (P|v=1:w(u!q t)

(16)

¢,l=0=0. Thus, it can be represented
as ¢¥=Re¢(w,q,t), where

S0 = f #dave

and i (q,t) = [¢(u,q,t)e”’“du. On the free surface

(q.He"" dk

17
coshk 277 (17

du+i,q0 =¥(u,qt) =(1+iR)¥(u,q,t).

For all the other terms in Eq13) we have the relations

(18)

(PE,TI) + qpf}r:rl) +V - (QJQ - VeM)=0 (19

and the boundary conditions

<P(n+l)|v:1 =0,
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[e™ + b +agl” +bel™)]|,=0=0
©

(20)

Noting that [(¢\”¢("+¢%¢")dudv=0 (it is easily seen

without explicit calculatlon Ofp<l) after integration by parjs
we have in the first approximation

1
Ko=2 J I +ag +bel”)*dudvdq

1 _ buZq
szuZu[Re(%‘Z

2
)] dudvdg. (21)

Since z(w) and ¢(w) are represented ax(u+iv):e‘2(1‘”)
x ZI¥(u) and ¢(u+iv)=et)W¥(u), we can use fou inte-
gration the following auxiliary formulas:

1 -
fduf [ AW) [ B(u) |dv

=- I§ f (B(w)d,"A(u) - BPI(u)3;"AP(u)du, (22)

with Al)(u)=e*A(u), B)(u)=e*B(u). Now we apply the

above formulas to appropriately decomposed K1)
nd, as a result, we obtain an expressmn of a faem
(1) (1) (1) [b] plbl
_IC[S] IC[b], WhereK[S]—f{W,gf,Z,Z}, ICLb]—}‘{\If l ,
zZIPl ZBL - with z=Z18], ZPl=gkz, wibl=ekyr=[coshk] 1.
The functionalF is defined as

i [ —
F= 5 f (Z2V o= Z3¥ ) d, (2, 4 - 24V )dudq

+ 1'—6 f ([(Z¥y- 20 )AZ]Z

- Z[(Z,¥ - Z4¥ )/ Z,]}dudg (23)

From here one can express the variational derivatives

(8K 5¢) and (K] 5Z) by the formulas

sk @ .F})éf @ ,é)é}"
= “IR)—+(1+IR)—
S ov SV
. (oKD sk
i [b] [b]
- [COShk] ( 5\If[b] 5@[—]) ) (24)
KW sF [ oKy
=—-¢e¥ 25)
5z oz € \sz®) (

The derivatives(5F/ V) and (8F/6Z) are calculated in a
standard manner,

i - . —
SV = ézq[(zu\lfq -Zyv) + au[(q’q - Zq\lfulzu)z]]

i e _
- ézuaq[aul(zuqfq =Z4V) + (Vq-Z4¥/Z,)Z],
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L S —— = =Z,(H-)[[Hy, -
— =" 'éqfq[(zu\pq ~ZaW) + (Vo - ZaW/Z,)Z]] Z,=Z,(H=D[[Hy, — (871591121, (28
+ 'gqfuavq[bgl(zuqu “ZWy) + (V- 2oV, /Z,)Z] g+ 9Y = Y HIHy, - (8F189) 2,7

+ ALyl Hep - (8F159)11/|1Z,2
- 2Re(H+D)[Z(8F1S2)D/|Z>, (29

i R —
+ E[au[(\qu = ZVZ,)°Z] - (W~ Z4W /Z,)°Z,].

The expressions fo(r&lcfg/é‘\l'[b]) and for(5ICEé§/5Z[b]) are .
. _ ~ where(8F/ 5y) =2 R (1-iH)(5F1 8¥)].
S'm'l"ﬁ') Now one can SH?St'tUt?(&C/ﬁw)z_R_% In summary, now we have derived fully nonlinear evolu-
+(6K ,/5"0) and (6K/ 6Z) = @’C_ /52_) into the equations tion equations for weakly 3D steep water waves, both for the
of motion (9) and (12), keeping in mind thaZ=Z(¢,d), Z,  geep water case and for waves over an arbitrary nonuniform

=Z' (8¢ Zg=Z'(&)éq+ gL, Z®'=7([coshk]™p,q), and so quasi one-dimensional bottom profile. A range of possible

on. Thus, the required weakly 3D equations of motion areapplications of this theory is very wide. The obtained equa-
completely derived, and our main goal is achieved. tions are intended to describe, for example, a sudden forma-

The answers are more compact in the lifkje>1, corre-  tion of giant waves in a sea, or overturning waves on a
sponding to the “deep water,” whé®—H, T—-H, with H ~ beach. The next step should be the development of an effi-
being the Hilbert operatotAfI:i signk In this casdc%ao, c!ent numerical method for the su_nulanon_ of these equations,
since at the present moment their analytical treatment seems

and therefore to be very hard. Recently, activity in this direction has been
1 ~ o undertaken by the author, and some preliminary numerical

Kaeep™= ~ Ef YHy dudg+ AW, ¥,Z2,7}. (26)  results have been already obtair{éal deep water waves at
this stage, as this case is the most simple for programiming
will be used for future serious numerical experiments.

Z=ut(i-HYUGD, Z,=1+(0-H)Y,. (27 These investigations were supported by RFBR, by the
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